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For a lattice gas with extended hard core interaction on a square lattice the 
static correlation functions of higher order, which determine the average jump 
rate in the diffusion process, are calculated both by the Monte Carlo method 
and by analytic, approximations. It is found that the superposition 
approximation is very inaccurate for the correlation functions of third and 
fourth order, but gives better results for the average jump rate. Up to concen- 
trations of c = 0.3 better consistency with the Monte Carlo data for both quan- 
tities is obtained by treating the site occupation numbers as Gaussian random 
variables and accordingly expressing the correlation functions of higher order by 
products of averages of two particle correlations. For concentrations c > 0.3, 
however, a Bethe-Peierls cluster approximation is superior to the superposition 
approximation. 

KEY WORDS:  Diffusion; square lattice gas; repulsive interaction; static 
correlation function; Monte Carlo simulation; superposition approximation; 
Bethe-Peierls approximation; free-volume theory. 

1. I N T R O D U C T I O N  

It is well known that the transport properties of dense fluids depend sen- 
sitively on their structural properties. The variation of transport coef- 
ficients, like the self-diffusion coefficient, with temperature and pressure is 
strongly affected by structural changes occurring as a function of these 
parameters. The relevant structural properties are determined by static (i.e., 
equal-time) correlation functions of higher order in addition to the pair 
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correlation function. For  example, as is intuitively obvious, the self-dif- 
fusion coefficient of a liquid depends not only on the average coordination 
number of the molecules, which is determined by the pair correlation 
function, but also on the mean-square fluctuation of the coordination num- 
ber, which can be expressed by the three-particle correlation function. The 
calculation of static correlation functions of higher order is not a trivial 
matter. Usually, for this purpose approximation schemes like the super- 
position approximation (SA) are used, by means of which the correlation 
functions of higher order are reduced to products of the pair correlation 
function. In the present paper the question of the reducibility of the static 
correlation functions of higher order which enter the self-diffusion coef- 
ficient is examined for an interacting lattice gas model. 

2. M O D E L  

The model describes particles on a two-dimensional square lattice, 
with an extended hard core which forbids both the multiple occupation of 
sites and the simultaneous occupation of nearest-neighbor sites. A Monte 
Carlo study of diffusion in the same model for three dimensions has been 
reported by Murch. (j'2) This extended hard core model may be interpreted 
as the zero-temperature limit of a lattice gas with a finite repulsive potential 
U between nearest neighbors. (The case of finite repulsive potential and 
finite temperatures will be treated in a subsequent paper. For a three- 
dimensional fcc lattice see Kutner, Binder, and Kehr. (3t) For  our model a 
second-order phase transition occurs at a critical concentration 
Ccrit = 0.37. (4'5) In the ordered phase one of the two sublattices is preferen- 
tially occupied. Since we consider the interacting lattice gas as a simplified 
model of a liquid, we are interested only in the disordered phase (c < 0.37). 
For the usual dynamics of lattice gases, (6) the transition rate p(1--* l') of a 
particle from site l to a nearest-neighbor site l' is given by the jump fre- 
quency 1/~ s unless the transition is impeded by the presence of other par- 
ticles; in this case the transition rate is zero. 3 Using the notation of 
Figure 1, the transition rate p(1 --* 0) can be written in terms of occupation 
numbers ni = 0, 1 as 

p ( l ~ O ) = - - i  w(1, O) (2.1) 
~s 

with 

w(1, O)=nx(1 - n2)(1 - n3)(1 - n 4 )  

3 In a Monte Carlo simulation of the diffusion process during one time step a chosen particle 
attempts to jump only in one direction which is selected at random. 
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Fig. 1. A particle at site 1 jumps to site O. 
The indicated notation is used throughout 
the paper. 
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The average transition rate of a particle originally at site 1 to the nearest- 
neighbor site 0 is given by (1/'Cs)V, where 

V= ( n l ( 1 -  n2)(1 - n3)(1 - n 4 ) ) / c  (2.2) 

is the conditional probability that the sites 2, 3, and 4 are vacant if the site 
1 is occupied. The vacancy of site 0 is guaranteed by the extended hard 
core of the particle at 1. In the expression for V, the brackets denote the 
average over an equilibrium ensemble, and c = ( h i )  is the concentration. V 
may be called the "vacancy availability factor" for the extended hard-core 
model. In terms of ~, and V, the mean residence time of a particle on a lat- 
tice site is given by 

1/v = (4/%)V (2.3) 

For a charged lattice gas, the vacancy availability factor V together with rs 
also determines the high-frequency limit of the electrical conductivity: 

q2. V 
a(oe) = - -  (2.4) 

zsak B T 

where q is the electric charge of a particle and a is the lattice constant. In 
the static conductivity o-(0) as well as in the self-diffusion coefficient, in 
addition to V a correlation factor enters which expresses dynamic 
correlations. (v-lo) 

According to formula (2.2), the vacancy availability factor V depends 
on correlations between the occupation of four neighboring sites. The 
significance of correlations of any order for V may be assessed by compar- 



554 Frob6se and J~ckle 

ing with the value ( l - c )  3 which is obtained if correlations are entirely 
neglected. The correlated part V -  (1 - c) 3 is a measure of the influence of 
correlations. The vacancy availability factor V can be expressed in terms of 
correlation functions up to fourth order, which are defined for general n by 

gn(ll, 12,..., In) = ( n h n t 2  nln)/c n (2.5) 

From formula (2.2) one obtains 

V= 1 - c[292(1, 2) + g2(1, 3)] + 3c293(1, 2, 3 ) -  c3g4(1, 2, 3, 4) (2.6) 

Since the correlation functions of higher than second order are more dif- 
ficult to calculate than the pair correlation function and cannot, in real 
systems, be measured directly, it is of considerable interest to what extent 
they can be approximated by combinations of the pair correlation function. 
As mentioned above, Kirkwood's superposition approximation (SA) for 
the triplet correlation function (11~ and its generalization to correlation 
functions of arbitrary order (12,13~ is commonly used for this purpose. In the 
present paper the validity of the SA for g3, g4, and V is tested by compar- 
ing with the results of a Monte Carlo calculation. As an alternative reduc- 
tion scheme for higher-order correlation functions the Gaussian fac- 
torization is also examined. In addition, it is shown that these quantities 
can be obtained with good accuracy from a Bethe Peierls cluster 
approximation. 

3. M O N T E  C A R L O  S I M U L A T I O N  

The Monte Carlo calculations were performed for a square lattice of 
256 x 256 sites with periodic boundary conditions. The equilibrium states of 
the system were generated at a given temperature and chemical potential 
using Glauber dynamics. (14) At each Monte Carlo step a lattice site was 
chosen randomly. The cost of AF of free energy F = E-- /xN of changing the 
occupation of the chosen site was calculated. In case of negative AF the 
occupation of the site was changed immediately (i.e., a particle was 
removed or added to the site if it was occupied or empty originally). For 
positive AF, the occupation was changed only with the probability 
exp( - -AF/ksT) .  (Is) In all computer experiments reported in this paper the 
extended hard core lattice gas was actually treated as the low-temperature 
limit of a lattice gas with finite repulsive potential U of a pair of nearest 
neighbors. The temperature was kept fixed at a value of 0.1 in units of U, at 
which the number of pairs of particles occupying nearest-neighbor sites is 
negligible. The simulation was started with an empty lattice and a value of 
the chemical potential of -0 .3 ,  which led to an equilibrium concentration 
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c = 0.04. After a period of thermalization of 100 Monte Carlo steps per site 
(MCS), the configurations were recorded at intervals of l0 MCS. After 
sampling 50 configurations the chemical potential was raised to the next 
higher value and the procedure was repeated, using the last configuration 
of the preceding run as the starting configuration. After ten steps the 
critical concentration was reached and the procedure was stopped. As the 
critical concentration was approached (for c > 0.34, say) the equilibration 
time of the system increased considerably. Therefore in this range of con- 
centrations the period of thermalization was extended to 300 MCS. With 
this precaution, even at the highest concentrations no significant time 
dependence of the concentratio and the vacancy availability factor could be 
detected in the Monte Carlo runs following the thermalization period. The 
correlation functions were evaluated by scanning the recorded con- 
figurations. All results were compared with an independent simulation for 
smaller systems of up to t28 x 128 sites, for which a simpler program could 
be used. Within the statistical errors no deviations were found. 

4. TEST OF THE SUPERPOSIT ION A P P R O X I M A T I O N  

Kirkwood's superposition approximation (H) for the triplet correlation 
function g3 reads 

g3(/1, 12, 13)= g2(ll, 12) g2(12,/3) g2(13,/1) (4.1) 

The value of g3 which enters V is given by (see Figure 1) 

g3(1, 2, 3 )=  [g2(1, 2)] 2 g2(1, 3) (4.1') 

The superposition approximation can be extended to correlation functions 
g~ of arbitrary order n by expanding the "potential of mean force" 

~,~ = - k ~ T l n  gn (4.2) 

in terms of "correlation potentials" for pairs and larger groups of up to n 
particles. (12'13~ The approximation is defined by neglecting multiparticle 
potentials beyond a certain order. Kirkwood's approximation (4.1) is 
obtained by taking only the correlation pair potential into account. 
Neglecting the correlation potentials beyond the three-particle potential, 
the following expression for g4 is derived: 

g3(l~, 12,/3) g3(12, 13, 14)g3(/3, 14, ll )g3(14, ]1,/2) 
g4(/1, 12, [3, /4) 

g2(ll, 12) g2(ll, 13) g2(ll, /4) g2(I2, 13) g2(I2, ]4) g2(/3, /4) 
(4.3) 
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Replacing g3 by approximation (4.1) yields 

g4(/1, 12, 13, / 4 ) =  g2(/1, 12)g2(/2, /3)g2(/3, /4)g2(/4,  /1) 

x g2(l l , /3)  g2(12,/4) (4.4) 

In this approximation (4.4), g4 is factorized into the product of two-particle 
correlation functions g2 for all pairs of sites. For the ring configuration of 
sites 1, 2, 3, and 4 (see Figure 1) the approximations (4.3) and (4.4) 
become 

[g3(1, 2, 3)] 4 
g4(1, 2, 3, 4 ) =  [g2(1, 2)]4 . [g2(1, 3)]2 (4.3') 

and 

g4(1, 2, 3, 4 ) =  [ga(1, 2)] 4. [g2(1, 3)] 2 (4.4') 

respectively. 
We have tested the accuracy of the SA by comparing with the results 

of the Monte Carlo calculation, both for the correlation functions 
g3(1, 2, 3) and g4(1, 2, 3, 4) of third and fourth order and for the vacancy 
availability factor V. Monte Carlo data for the pair and triplet correlation 
function g2 and g3 were also used to evaluate the expressions obtained in 
the SA. As shown in Figure 2, the error of the SA for g3(1, 2, 3) is more 

, ' ' -m ' . :O  ",'~'~'0 / "  " 
, , / ;  ; , 0 '  

0 i i m I 
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C 

Fig. 2. Triplet correlation function g3(1, 2, 3) in the SA (--o---) and in the Gaussian fac- 
torization (..o..) compared with the result of Monte Carlo calculation ( - -~  The lines are 
guides to the eye. The dash-dotted line is the result of the Bethe Peierls approximation. 
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Fig. 3. Fourth-order correlation function g4(1, 2, 3, 4) (see text) in various versions of the SA 
( + )  and in the Gaussian factorization (-.o-.) compared with the result of the Monte Carlo 
calculation ( - -o- - ) .  The lines are guides to the eyes. The dash-dotted line is the result of the 
Bethe-Peierls approximation. 

than 50% at concentrations >~0.2. In Figure 3 the approximations (4.Y) 
and (4.4') of the fourth-order correlation function g4(1, 2, 3, 4) are marked 
as (II) and (I), respectively. The error of approximation (II) is close to 
50% only at the highest concentrations, but the error of approximation (I) 
exceeds 50% already at rather low concentrations c~>0.12. The low 
accuracy of approximation I for g4(1, 2, 3, 4) may be guessed from the very 
large error obtained in the limit c--, 0.5. In this limit the approximation 
yields a value of 64, which is eight times the correct value. In view of these 
large discrepancies, tentatively a modified approximation (I') is introduced, 
in which the pair correlations across the ring of sites 1, 2, 3, and 4 
(Figure 1) are dropped; the modified approximation for g4(1, 2, 3, 4) reads 

g4(1, 2, 3, 4 ) =  [g2(1, 2 ) ]  4 (4.5) 

As is to be expected from the smaller limiting value of 8 for c--, 0.5, 
approximation (I') is in better agreement with the Monte Carlo result, with 
an error exceeding 50 % only at concentrations c >~ 0.3. It should be noted, 
however, that approximation (4.5) is not derived in a systematic way. 
Figure 4 shows the various approximate results for the reduced vacancy 
availability factor V / ( 1 - c )  3 together with the Monte Carlo data. Sur- 
prisingly, for concentrations up to c =0.3, the approximation (I) is now 
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Fig. 4. Vacancy availability factor in units of the uncorrelated part (1 c) 3 in various ver- 
sions of the SA ( + )  (see text) and in the Gaussian factorization (-o--) compared with the 
results of the Monte Carlo calculation (--o--). The lines are guides to the eye. The dash-dot- 
ted line is the result of the Bethe Peierls approximation. 

abou t  as accurate  as approx imat ion  (II), with a 30% error at c = 0 . 3  in 
both  cases. Only  at higher concentra t ions  c > 0 . 3  the result of 
approx imat ion  (I) deteriorates rapidly, leading to very small and finally 
negative values of V. Obviously,  the error  in the approx ima t ion  for g4 is 
largely compensa ted  by the error  involved in the approx ima t ion  for g3. The 
modified approx ima t ion  (I ') ,  on the other hand,  is now very inaccurate,  
with an error  exceeding 5 0 %  already at c =  0.24 and growing rapidly at 
higher concentrat ions.  

5. TEST OF GAUSSIAN FACTORIZATION 

An alternative approx imat ion  scheme for reducing higher-order  
correlat ion functions is obta ined by treat ing the s i te-occupat ion numbers  n t 
as Gauss ian  variables, as is done in the mean  spherical approx imat ion  
(MSA). Using the factorizat ion of averages of products  of Gauss ian  ran- 
dom variables, the following expression for the three- and four-site 
correlat ion function and the vacancy-avai labi l i ty  factor  are derived: 

g3(1, 2, 3) = 2g2(1, 2 ) +  g2(1, 3 ) - 2  (5.1) 
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g4(1, 2, 3, 4 )=  1 + 4[g2(1, 2)-- 1] 

+ 2[g2(1, 3)-- 1] 

+ 2[g2(1, 2)-- 112+ [g2(1, 3)-- 1] 2 (5.2) 

V=(1 - c )  3 

- c(1 -c ) (1  - 2c){2[g2(1 , 2 ) -  1] + g2(1, 3 ) -  1} 

-c3{2[g2(1,2)-l]2+[g2(1,3)-l]2 } (5.3) 

The validity of these formulas is tested using Monte Carlo data for the 
pair-correlation function. The results for g3(1, 2, 3), g4(1, 2, 3, 4) and for V 
are included in Figures 2, 3, and 4, respectively. It can be seen that the 
results for the three- and four-site correlation function are much more 
accurate than those obtained in the superposition approximation, whereas 
for the vacancy availability factor for concentrations higher than 0.3 the 
Gaussian factorization fails equally. 

6. BETHE-PEIERLS CLUSTER A P P R O X I M A T I O N  

Since only short-range correlations enter the vacancy availability fac- 
tor, a Bethe Peierls cluster approximation is appropriate. (As an alter- 
native, Kikuchi's cluster variation method could also be used. (17'18)) It is 
found that the cluster of nine sites shown in Figure 1 is large enough to 
produce satisfactory results. It would not be sufficient to consider the 
cluster of the five inner sites only, since the correlations between the first 
and second coordination shell are important. (The results do not change, 
however, if the four sites of the third coordination shell are added to the 
cluster.) In the Bethe-Peierls approximation the effect of the medium 
surrounding the cluster is taken into account by allowing the chemical 
potential of the surface sites to differ from the bulk chemical potential # 
which exists at the central site. The values of the surface chemical potentials 

and 

#1 = #2 =#3 = #4 

#5 = #6 = #7 = #s 

are determined by the condition that all sites of the cluster are equally pop- 
ulated on the average. The conditions for #1 and P5 therefore read 

(no)  = (n~)  = (n s )  (6.1) 
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In terms of the fugacities 

z = exp(/~#), Zx = exp(fl#1), z5 = exp(/~#5) (6.2) 

the grand canonical parti t ion function Zcl of the cluster is given by 

z ~  = (z + 1)(1 + zs) 4 + 4z~(! + zs) 2 

+ z~(4zs + 6 + 4z~ + z~) (6,3) 

Differentiating with respect to #, #~, and #5 one obtains 

( n o )  = z(1 + zs)4/Zoj (6.4a) 

( n , )  =z , { (1  + 2 z l  +zs ) (1  + z s )  

+ [ ( z ~ + 3 ) z l +  1] z~}/Zo~ (6Ab) 

( n s ) = Z s { E ( a + % ) 2 ( z + l ) + Z Z l ] ( l + z s ) + z ~ } / Z c l  (6.4c) 

0.4 

C 
. ' / ~  . . ~  

0.3 

0.2 

0.1 

With these expressions, the equations (6.1) have to be solved numerically 
for #1 and P5 at g i v e n / 3 =  (keT)  -1 and #. The result for the concentra t ion 
c =  ( n )  as a function of the fugacity z is shown in Figure 5. 

Although we are not  interested in the properties of the ordered phase 
existing above the critical concentrat ion,  it is of  interest to know at which 

0 J I I 

0 I 2 3 4 5 
Z =@PP 

Fig. 5. Concentration c in dependence of the fugacity z=e l~ from the Monte Carlo 
calculation compared with the result of the Bethe-Peierls approximation ( . . . . .  ). The upper 
curve describes the ordered phase. The full line is a guide to the eye. 
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concentration the phase transition occurs in the approximation. To extend 
the cluster approximation to the ordered phase, one must take the broken 
symmetry between the two sublattices A and B into account. (19'2~ Because 
of the asymmetry, there are two inequivalent ways of selecting a cluster 
from the lattice, in which the central site belongs either to sublattice A 
or B. The two different clusters of type A and B have to be considered 
simu/taneousJy. Ti~e four chemical potentials ~'~, ~s' ~'~, ~I ~, and ~s)  at the 
surfaces of the two types of clusters are determined by the four equations 

and 

(6.5a) 

(6.5b) 

which express lhe condition that equivalent lattice sites in both clusters 
should be equally populated. Below a critical value z* of the fugacity, the 
equations (6.5) have a unique solution with (n (A~)= (n(m), 
corresponding to the symmetric disordered phase. Above z* two asym- 
metric solutions for the ordered phase with an order parameter 

( n  (A)) - (n (e~) r 0 

are obtained in addition. The two asymmetric solutions are mirror images 
of one another. A calculation of the free energy shows that the asymmetric 
solution is thermodynamically stable. For z values above the critical value 
z*, Figure 5 shows both the concentration in the unstable symmetric phase 
and the average concentration 

(n> = ((n(A~> + (n(B)>)/2 

for the stable asymmetric phase. At Ihe branching point z*, 1he critical con- 
centration has the value c* =0.32, which has to be compared with the 
correct value c~m =0,37. In the concentration range 0.32 <~ c~<0.37, con- 
sistency would require to calculate correlation functions and vacancy 
availability factor for the asymmetric solution corresponding to the ordered 
phase. In the figures, however, the results for the disordered phase are 
drawn up to the critical concentration of 0.37. 

With the chemical potentials ~ and ~t~ calculated from Eqs. (6.1), the 
corre la t ion / 'unc t ions  g , ( t i ,  12 ..... l~) are calculated in the usual way by dif- 
ferentiating the partition function with respect to suitable auxiliary poten- 
tials. For the pair correlation function g2(1, 2), for example, the following 
formula in terms of the fugacities z, zl, and z5 is derived: 

g2(1, 2) = z2[-4(1 + zs) + Sz 1 -t- Z2]/(gcl c2) (6.6) 
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Comparing the correlation functions obtained from a Bethe Peierls cluster 
approximation with Monte Carlo data, one must remember that trans- 
lational invariance is broken by the selection of a particular cluster. 
Therefore, in the approximation correlation functions may have different 
values for groups of sites which are equivalent in the infinite system, but 
not equivalent on the cluster. For example, the approximate g2(1, 2) differs 
from g2(0,  5). (Translational invariance would be maintained if Kikuchi's 
cluster variation method (21'22) were used.) The ambiguity, which occurs in 
the approximate calculation of the two- and three-site correlation function, 
does not arise, however, for g4(1, 2, 3, 4) nor for V. Figure 6 shows the 
results of the Bethe-Peierls cluster approximation for the pair correlation 
functions g2(1, 2) and g2(0,  5), and for g2(1, 3) and g2(5,  6) in comparison 
with Monte Carlo data. The violation of translational invariance is very 
noticeable, but is not dramatic. The results of the approximation for the 
three- and four-site correlation function and for the vacancy availability 
factor are included in the Figures 2, 3, and 4, where they are shown by the 
dashed-dotted lines. In all three cases, the result of the Bethe-Peierls 
approximation is in much better agreement with the Monte Carlo results 
than any version of the SA. Despite its relative simplicity, the Bethe Peierls 
approximation is well suited for the description of higher-order correlations 
which determine the average jump rate in our lattice gas model. 
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Fig. 6. Pair correlation functions for next-nearest neighbors from the Monte Carlo 
calculation ( - -o  ) compared with the results of the Bethe Peierls approximation ( . . . . .  ). 
Because of broken translational invariance g2(1, 2) and g2(0, 5) are different. 
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Finally it is shown that for the particular cluster chosen, the Bethe 
Peierls approximation leads to some factorizations of correlation functions 
of higher order, which can be compared with the SA. Because of the greater 
accuracy of the Bethe-Peierls approximation, these factorizations are much 
more accurate than similar factorizations obtained from the SA. The fac- 
torizations can be derived directly by considering situations in which the 
occupation of some sites in the cluster leads to statistical independence of 
the occupation of some remaining sites. For example, if site 0 in the cluster 
of Figure 1 is occupied, the populations of sites 5, 6, 7, and 8 are mutually 
unrelated, since the extended hard core of the particle on site 0 forbids the 
occupation of sites 1, 2, 3, and 4. As a result of this, the following relations 
hold in our cluster approximation: 

g3(0, 5, 6 )=  [g2(0, 5)] 2 = g3(0, 5, 7) (6.7) 

g4(0, 5, 6, 7 )=  [g2(0, 5)] 3 (6.8) 

g~(0, 5, 6, 7, 8 )=  [g2(0, 5)] 4 (6.9) 

Equation (6.7), for example, is a better approximation than the equation 

g3(0, 5, 6) = [g2(0, 5)] 2 g2(5, 6) (6.10) 

which is a special case of the SA [Eq. (4.t)]. [Under conditions of trans- 
lational invariance (6.10) is, of course, equivalent to (4.1').] Similarly, if 
sites 1 and 3 are occupied, the populations of sites 2 and 4 are mutually 
uncorrelated. This leads to the relation 

[g3(1, 2, 3)] 2 
g4(1, 2, 3, 4) - (6.11) 

g2(1, 3) 

which should be compared with Eq. (4.3'). O'Keeffe (23) used a similar 
relation in an approximate calculation of the vacancy availability factor for 
a simple cubic lattice. The projection on the square lattice of the cluster 
considered by him is shown in Figure 7. If the central site (1) of this cluster 
is occupied, the populations of all surface sites, in particular of sites 2, 3, 
and 4, are mutually uncorrelated. The vacancy availability factor is then 
obtained as 

V= [1 -- cg2(1, 2)] 2. [1 - cg2(1, 3)] (6.12) 

This approximation is, however, not very accurate because it corresponds 
to neglecting the sites of the second coordination shell in the cluster of 
Figure 1. [With Monte Carlo functions g2(1, 2) and g2(1, 3), the result 
(6.12) is by more than 30% too low at concentrations of 0.3 and higher.] 



564 Frob6se and J~ckle 

/ , \ 
2 

1 0 ,) 
Fig. 7. The cluster which would correspond 
to O'Keefe's approximation in two dimen- 
sions (black dots) compared with the cluster 
considered in this paper. 

7. FREE-VOLUME FORMULA 

In the phenomenological theory of molecular transport in dense fluids, 
the concept of the "free molecular volume ''(24 26) is widely used. The idea is 
that a certain amount of free volume, which corresponds to a sufficiently 
large hole, is necessary for a molecular rearrangement. The free-volume 
model is expected to apply only at higher densities at which the number of 
holes is small. It is worth trying to extend these considerations to our lat- 
tice gas model. 

Under the assumption that the total number Nr of "free sites" in the 
lattice is distributed among the N particles in a statistically independent 
way one finds for the probability distribution for the number nf of free sites 
assigned to a particular molecule 

p(nf)= 1 + nV----=f\l +nZ----=-J ' nr=0 ,  1, 2 .... (7.1) 

where the average ~i is given by NI/N. Assuming the relation between r?r 
and the inverse c - t  of the concentration to be linear, one obtains 

~f= 1/c - 2 ( 7 . 2 )  

since at c = 0.5 all sites are blocked in the close-packed structure. The third 
assumption is that a particle can jump to some other site only if its free 
volume exceeds a certain critical value corresponding to n C free sites. This 
assumption leads to the following free-volume expression for the analog of 
the vacancy-availability factor: 

 fv-- ,73  
,:=,< ns/ 
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Vacancy availability factor V from the Monte Carlo calculation ( - - o  ) compared 
to the result of the free-volume theory (7.3) with n, = 3. 

Since the jump of a particle to a nearest-neighbor site requires at least three 
vacancies on neighboring sites, it is reasonable to put nc = 3. For  this value 
of no, the result of Eqs, (7.2) and (7.3) is shown in Figure 8 together with 
the Monte Carlo data at higher concentrations 0.25 < c < 0.37. In view of 
the simplifying assumptions made, the agreement is gratifying. Unfor- 
tunately, these assumptions cannot be justified by a more detailed analysis. 
First, it is easy to see that the free volumes of neighboring particles are not 
independent. Second, a proper geometrical definition of free volume by the 
Wigner-Seitz construction leads to fractional values which are not mul- 
tiples of some unit of free volume. A detailed analysis of the distribution of 
free volume so defined would not be any simpler than the original problem 
of calculating the vacancy availability factor. 

8. C O N C L U S I O N  

For the lattice gas model investigated, it has been shown that the use 
of the SA in the calculation of correlation functions of higher order may 
lead to substantial errors. For  the three and four-site correlation function 
the SA proves to be unreliable, except at low concentration (c < 0.1). Sur- 
prisingly, the results of the SA for the vacancy availability factor are in 
much better agreement with the Monte Carlo data due to partial can- 
cellation of errors. At higher concentrations (0 .3<c<0 .37 ) ,  however, 
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serious d iscrepancies  remain .  The  G a u s s i a n  fac to r i za t ion  of the co r re l a t ion  
func t ions  a n d  the vacancy  ava i lab i l i ty  factor  agree r e m a r k a b l y  well wi th  

the M o n t e  Ca r lo  d a t a  b u t  they also fail b e y o n d  c = 0.3. M u c h  bet te r  resul ts  
for the co r r e l a t i on  func t ions  a n d  for the vacancy  ava i lab i l i ty  factor  are 
o b t a i n e d  wi th  a Be the -Pe ie r l s  c luster  a p p r o x i m a t i o n .  The  cluster  

a p p r o x i m a t i o n  also suggests  m o r e  accura te  f ac to r i za t ions  of the co r re l a t ion  

func t ions  of  h igher  o rder  as an  a l t e rna t ive  to the  SA. O u r  resul ts  conf i rm 

tha t  s tat ic  cor re la t ions ,  as they affect diffusion processes in  i n t e rac t ing  lat-  

tice gases, are  by no  m e a n s  tr ivial  a n d  deserve be ing  s tud ied  further.  

A C K N O W L E D G M E N T S  

W e  wish to t h a n k  Professors  K. W. Kehr ,  W. Dieter ich,  a n d  K. B inde r  

for useful d iscuss ions .  

R E F E R E N C E S  

1. G. E. Murch, Solid State Ionics 5:117 (1981). 
2. G. E. Murch, Philos. Mag. A43:871 (1981). 
3. R. Kutner, K. Binder, and K. W. Kehr, Phys. Rev. B 28:1846 (1983). 
4. D. S. Gaunt and M. E. Fisher, J. Chem. Phys. 43:2840 (1965). 
5. K. Binder and D. P. Landau, Phys. Rev. B 21:1941 (1980). 
6. K. Kawasaki, Phys. Rev. 145:224 (1966); 148:375 (1966); 150:285 (1966). 
7. A. Bunde, D. K. Chaturvedi, and W. Dieterich, Z. Phys. B47:209 (1982). 
8. A. Bunde and W. Dieterich, Phys. Rev. B 31:6012 (1985). 
9. W. Dieterich, P. Fulde, and I. Peschel, Adv. Phys. 29:527 (1980). 

10. K. W. Kehr and K. Binder, Topics in Current Physics 36:181 (1984). 
11. J. G. Kirkwood, J. Chem. Phys. 3:300 (1935). 
12. H. S. Green, The Molecular Theory of Fluids (North-Holland, Amsterdam, 1952), p. 70. 
13. I. Z. Fisher, Statistical Theory of Liquids (The University of Chicago Press, Chicago, 

1966), p. 251; Soy. Phys. Usp. 5:239 (1962). 
14. R. J. Glauber, J. Math. Phys. 4:294 (1963). 
15. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. 

Phys. 21:1087 (1953); K. Binder (ed.), Applications of the Monte Carlo Method in 
Statistical Physics (Topics in Current Physics, Vol. 36, 1984). 

16. J. L. Lebowitz and J. K. Percus, Phys. Rev. 144:251 (1966). 
17. R. Kikuchi and H. Sato, J. Chem. Phys. 55:702 (1971). 
18. H. Sato and R. Kikuchi, J. Chem. Phys. 55:677 (1971). 
19. J. M. Ziman, Proc. Phys. Soc. (London) 64:1108 (1951). 
20. U. Firgau, Ann. Phys. (Leipzig) 40:295 (1942). 
21. C. Domb, Adv. Phys. 9:149 (1960). 
22. R. Kikuchi and S. G. Brush, J. Chem. Phys. 4"7:195 (1967). 
23. M. O'Keefe, Chemistry of Extended Defects in Non-Metallic Solids, L. Eyring and M. 

O'Keefe, eds. (North-Holland, Amsterdam, 1970), p. 609. 
24. J. G. Kirkwood, J. Chem. Phys. 18:380 (1950). 
25. T. L. Hill, Statistical Mechanics (McGraw-Hill, New York, 1956), p. 355. 
26. M. H. Cohen and D. Turnbull, J. Chem. Phys. 31:1164 (1959). 


